tag

卷积神经网络

手机端运行卷积神经网络的一次实践 — 基于 TensorFlow 和 OpenCV 实现文档检测功能 1. 前言 本文不是神经网络或机器学习的入门教学,而是通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点 在卷积神经网络适用的领域里,已经出现了一些很经典的图像分类网络,比如

文章来源:机器之心。 让机器能根据文章的主题思想生成人类能够读懂的文本摘要是一个重要的 NLP 研究问题。腾讯知文团队、苏黎世联邦理工学院、哥伦比亚大学和腾讯 AI Lab 的研究者针对这一任务提出了一种引入主题模型和强化学习方法的卷积神经网络方法。该论文已被 IJCAI 2018 接收,机器之心在

从 MobileNet V1 到 MobileNet V2 ResNet、Inception、Xception 追求的目标,就是在达到更高的准确率的前提下,尽量在模型大小、模型运算速度、模型训练速度这几个指标之间找一个平衡点,如果在准确性上允许一定的损失,但是追求更小的模型和更快的速度,这就直接催生

前言 这是 上一篇博客 ((http://fengjian0106.github.io/2017/05/08/Document-Scanning-With-TensorFlow-And-OpenCV/)) 的后续和补充,这次对边缘检测算法的升级优化,起源于一个意外事件,前一个版本是使用 Tensor

本文作者:Bang Liu、Di Niu等 文章之间关系匹配是自然语言处理领域的重要问题。传统算法忽略了文本内部语义结构,而深度神经网络目前主要用于句子对之间的匹配。同时由于长文本对计算量需求较大,且目前缺乏训练数据集,因此长文本的匹配问题一直难以解决。对此,来自阿尔伯塔大学和腾讯 PCG 移动浏览

导语:读书,伴随技术人的一生。技术人通过读书增长见闻、精进技术,提升人生境界。20年农历春节,我们特别邀请几位重量级鹅厂技术大牛分别推荐曾经读过的好书佳作,以飨读者。 推荐人介绍 coolc,现任腾讯安全平台部负责人,十多年网络安全从业经验,主要研究领域包括黑客攻防对抗、安全架构、安全产品。2005